e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

LooPo-HOC: A grid component with embedded loop parallelization

en
Abstract

This work integrates two distinct. research areas of parallel and distributed computing, (1) automatic loop parallelization, and (2) component-based Grid programming. The latter includes technologies developed within CoreGRID for simplifying Grid programming: the Grid Component Model (GCM) and HigherOrder Components (HOCs). Components support developing applications on the P Grid without taking all the technical details of the particular platform type into account (network communication, heterogeneity, etc.). The GCM enables a hierarchical composition of program pieces and HOCs enable the reuse of component code in the development of new applications by specifying application-specific operations in a program via code parameters. When a programmer is provided, e.g., with a compute farm HOC., only the independent worker tasks must be described. But, once an application exhibits data or control dependences, the trivial farm is no longer sufficient. Here, the power of loop parallelization tools, like LooPo, comes into play: by embedding LooPo into a HOC, we show that these two technologies in combination facilitate the automatic transformation of a sequential loop nest with complex dependences (supplied by the user as a HOC parameter) into an ordered task graph, which can be processed on the Grid in parallel. This technique can significantly simplify GCM-based systems which combine multiple HOCs and other components. We use an equation system solver based on the successive overrelaxation method (SOR) as our motivating application example and for performance experiments.

en
Year
2008
en
Country
  • DE
Organization
  • Univ_Munster (DE)
  • Univ_Passau (DE)
Data keywords
  • distributed computing
en
Agriculture keywords
  • farm
en
Data topic
  • big data
  • information systems
  • modeling
en
SO
GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/N5MP2TM7
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.