e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Monitoring the chipping and transportation of wood fuels with a fleet management system


Controlling and organizing the complex forest-to-consumer supply chain of wood fuels is a challenging task, especially for the chipping and transport processes. Truck mounted chippers and transport trailer-trucks must be scheduled to minimize delay to be profitable. Job management within the supply chain, including machine activity based controlling, offers a new way to increase efficiency and productivity. However, detailed data are required to detect and analyze potential gaps and improve forest fuel supply. Generally, data regarding the wood fuel supply chain process are obtained from extensive time studies that are based on a specific process step. Although time studies can detect details during the production of forest fuels, they only describe certain time frames. Long-term data that are recorded during the entire year could encompass seasonal and short term effects. This study aims to monitor the forest fuel supply processes (semiautomated), specifically regarding time and fuel consumption. Large data sets were automatically and efficiently gathered with little effort by drivers and operators. Data were recorded with fleet management equipment for more than 14 months. Vehicle data, including GPS data, were logged at an interval of one minute. Data management was conducted in a pre-configured database that contained pre-defined reports and were run by the Institute of Forest Engineering, Vienna. Work step assignments were implemented with Structured Query Language (SQL)-routines by using the raw machine activities data and GPS. The chipping and transport activities of more than 240 loads were analyzed by focusing on fuel consumption, time needed and traffic. The average distance between chipping sites and plants was approximately 54 kilometers. Fuel consumption from transport reached 501/100 km. The chipping unit reached a productivity of 12.8 odt/PSH15 and had a fuel consumption of 58 liters per operating hour.

  • AT
    Data keywords
    • data management
    Agriculture keywords
    • supply chain
    Data topic
    • sensors
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.