e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


A PDA-based record-keeping and decision-support system for traceability in cucumber production


For the small-scale and scattered fresh cucumber production in China, the result that production record-keeping and its transfer are inefficient have prevented the wide application of traceability systems in China. With the mobility and computability, Personal Digital Assistant (PDA) provides a new way for agricultural information collection to solve the above problems. Thus a PDA-based Record-keeping and Decision-support System (PRDS) for traceability in cucumber production was developed on Windows Mobile platform invoking a Geographic Information System (GIS) control. For improving the decision making feasibility of PRDS, the fertilization recommendation model and pesticide usage early warning model were developed by using the Technical Specification of Balanced Fertilization by Soil Testing and the Guideline for Safety Application of Pesticides in China. The architecture of PRDS was provided. With Unified Modeling Language (UML), a requirement model including two types of users and 17 use cases was described, and a static class model was also designed, which consisted of table class, table operation class, algorithm class and interface class. Based on these models, the functions of system setup, map management, data management, production record-keeping and decision-support and query, etc., were implemented by adopting Hosting MapInfo MapX Mobile Controls on the .NET Compact Framework 2.0, and the data synchronization was realized by Remote Data Access (RDA). Two agricultural production enterprises were chosen as case study to evaluate the system by questionnaires. The results show that the efficiency of production record-keeping and decision-support is improved by the simple and friendly system. (C) 2009 Elsevier B.V. All rights reserved.

  • CN
  • CAAS_China_Acad_Agr_Sci (CN)
  • China_Agr_Univ_CAU (CN)
Data keywords
  • information system
  • data management
Agriculture keywords
  • agriculture
Data topic
  • information systems
  • decision support
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CAAS_China_Acad_Agr_Sci (CN)
  • China_Agr_Univ_CAU (CN)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.