e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Multi-criteria characterization of recent digital soil mapping and modeling approaches


The history of digital soil mapping and modeling (DSMM) is marked by adoption of new mapping tools and techniques, data management systems, innovative delivery of soil data, and methods to analyze, integrate, and visualize soil and environmental datasets. DSMM studies are diverse with specialized, mathematical prototype models tested on limited geographic regions and/or datasets and simpler, operational DSMM used for routine mapping over large soil regions. Research-focused DSMM contrasts with need-driven DSMM and agency-operated soil surveys. Since there is no universal equation or digital soil prediction model that fits all regions and purposes the proposed strategy is to characterize recent DSMM approaches to provide recommendations for future needs at local, national and global scales. Such needs are not solely soil-entered, but consider broader issues such as land and water quality, carbon cycling and global climate change, sustainable land management, and more. A literature review was conducted to review 90 DSMM publications from two high-impact international soil science journals - Geoderma and Soil Science Society of America Journal. A selective approach was used to identify published studies that cover the multi-factorial DSMM space. The following criteria were used (i) soil properties, (ii) sampling setup, (iii) soil geographic region, (iv) spatial scale, (v) distribution of soil observations, (vi) incorporation of legacy/historic data, (vii) methods/model type, (viii) environmental covariates, (ix) quantitative and pedological knowledge, and (x) assessment method. Strengths and weaknesses of current DSMM, their potential to be operationalized in soil mapping/ modeling programs, research gaps, and future trends are discussed. Modeling of soils in 3D space and through time will require synergistic strategies to converge environmental landscape data and denser soil datasets. There are needs for more sophisticated technologies to measure soil properties and processes at fine resolution and with accuracy. Although there are numerous quantitative models rooted in factorial models that predict soil properties with accuracy in select geographic regions they lack consistency in terms of environmental input data, soil properties, quantitative methods, and evaluation strategies. DSMM requires merging of quantitative, geographic and pedological expertise and all should be ideally in balance. (C) 2009 Elsevier B.V. All rights reserved.

  • US
  • Univ_Florida (US)
Data keywords
  • knowledge
  • data management
Agriculture keywords
    Data topic
    • modeling
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
    • Univ_Florida (US)
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.