e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Evaluating terrestrial carbon sequestration options for Virginia

en
Abstract

Changes in forest and agricultural land management practices have the potential to increase carbon (C) storage by terrestrial systems, thus offsetting C emissions to the atmosphere from energy production. This study assesses that potential for three terrestrial management practices within the state of Virginia, USA: afforestation of marginal agricultural lands; afforestation of riparian agricultural lands; and changing tillage practices for row crops; each was evaluated on a statewide basis and for seven regions within the state. Lands eligible for each practice were identified, and the C storage potential of each practice on those lands was estimated through a modeling procedure that utilized land-resource characteristics represented in Geographic Information System databases. Marginal agricultural lands' afforestation was found to have the greatest potential (1.4 Tg C yr(-1), on average, over the first 20 years) if applied on all eligible lands, followed by riparian afforestation (0.2 Tg C yr(-1) over 20 years) and tillage conversion (0.1 Tg C yr(-1) over 14 years). The regions with the largest potentials are the Ridge and Valley of western Virginia (due to extensive areas of steep, shallow soils) and in the Mid-Atlantic Coastal Plain in eastern Virginia (wet soils). Although widespread and rapid implementation of the three modeled practices could be expected to offset only about 3.4% of Virginia's energy-related CO2 emissions over the following 20 years (equivalent to about 8.5% of a Kyoto Treaty-based target), they could contribute to achievement of C-management goals if implemented along with other mitigation measures.

en
Year
2007
en
Country
  • US
Organization
  • Virginia_Polytech_Inst_&_State_Univ_Virginia_Tech (US)
Data keywords
  • information system
en
Agriculture keywords
  • agriculture
en
Data topic
  • information systems
  • modeling
  • decision support
  • sensors
en
SO
ENVIRONMENTAL MANAGEMENT
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Virginia_Polytech_Inst_&_State_Univ_Virginia_Tech (US)
uid:/P0NC8J3N
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.