e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Trypano-PPI: A Web Server for Prediction of Unique Targets in Trypanosome Proteome by using Electrostatic Parameters of Protein-protein Interactions


Trypanosoma brucei causes African trypanosomiasis in humans (HAT or African sleeping sickness) and Nagana in cattle. The disease threatens over 60 million people and uncounted numbers of cattle in 36 countries of sub-Saharan Africa and has a devastating impact on human health and the economy. On the other hand, Trypanosoma cruzi is responsible in South America for Chagas disease, which can cause acute illness and death, especially in young children. In this context, the discovery of novel drug targets in Trypanosome proteome is a major focus for the scientific community. Recently, many researchers have spent important efforts on the study of protein-protein interactions (PPIs) in pathogen Trypanosome species concluding that the low sequence identities between some parasite proteins and their human host render these PPIs as highly promising drug targets. To the best of our knowledge, there are no general models to predict Unique PPIs in Trypanosome (TPPIs). On the other hand, the 3D structure of an increasing number of Trypanosome proteins is reported in databases. In this regard, the introduction of a new model to predict TPPIs from the 3D structure of proteins involved in PPI is very important. For this purpose, we introduced new protein-protein complex invariants based on the Markov average electrostatic potential xi(k)(R(i)) for amino acids located in different regions (R(i)) of i-th protein and placed at a distance k one from each other. We calculated more than 30 different types of parameters for 7866 pairs of proteins (1023 TPPIs and 6823 non-TPPIs) from more than 20 organisms, including parasites and human or cattle hosts. We found a very simple linear model that predicts above 90% of TPPIs and non-TPPIs both in training and independent test subsets using only two parameters. The parameters were (d)xi(k)(S) = vertical bar xi(k)(S(i)) - xi(k)(S(2))vertical bar, the absolute difference between the xi(k)(S(i)) values on the surface of the two proteins of the pairs. We also tested nonlinear ANN models for comparison purposes but the linear model gives the best results. We implemented this predictor in the web server named Trypan-oPPI freely available to public at http://miaja.tic.udc.es/Bio-AIMS/TrypanoPPI.php. This is the first model that predicts how unique a protein-protein complex in Trypanosome proteome is with respect to other parasites and hosts, opening new opportunities for antitrypanosome drug target discovery.

  • ES
  • Univ_Santiago_de_Compostela_USC (ES)
  • Univ_Coruna_UDC (ES)
Data keywords
  • machine learning
  • knowledge
Agriculture keywords
  • cattle
Data topic
  • big data
  • information systems
  • modeling
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.