The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
The importance of information technology and ubiquitous computing are gained in the agricultural area. A remote monitoring tool, namely Field Servers, is developed and used in recent agricultural industries. The Field Server can handle weather data, measuring and taking photo images for analyzing visualized information. However, image data acquired by the Field Server is not adequately used for automatic control in current systems even though the conditions of plants, pests and thieves can be detected from the images. The purpose of this research is to develop an application which controls peripherals on the basis of features extracted from image data. As our first proposal we developed the farmer support system which pours water to wilting plants automatically. In this system, four indicators are used to detect the wilt of plants that have dense or sparse leaves. Two experiments were employed on using plants which are observed by a Field Server located outside. The experimental results prove that we can detect the wilt of plants by use of the proposed system.
Inappropriate format for Document type, expected simple value but got array, please use list format