e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Soil water content forecasting by ANN and SVM hybrid architecture


Soil water content prediction is essential to the development of advanced agriculture information systems. Because soil water content series are inherently noise and non-stationary, it is difficult to get an accurate forecasting result. Considering the problems, in this paper, a novel hybrid learning architecture is proposed according to divide-and-conquer principle, the forecasting accuracy is improved. This novel hierarchical architecture is composed of ANN (Kohonen neural network) and SVM (support vector machine). The Kohonen network is used as a classifier, which partitions the whole input space into several distinct feature regions. Then, the best SVM predictor combined with an appropriate kernel function can be achieved for correspondence regions. The experimental results based on the hybrid model exhibit good agreement with actual soil water content measurements and outperform ANN and SVM single-stage models.

  • CN
  • SW_Univ (CN)
Data keywords
  • information system
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • SW_Univ (CN)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.