e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing


The solution of complex global challenges in the land system, such as food and energy security, requires information on the management of agricultural systems at a high spatial and temporal resolution over continental or global extents. However, computing capacity remains a barrier to large-scale, high-resolution agricultural modeling. To model wheat production, soil carbon, and nitrogen dynamics in Australia's cropping regions at a high resolution, we developed a hybrid computing approach combining parallel processing and grid computing. The hybrid approach distributes tasks across a heterogeneous grid computing pool and fully utilizes all the resources of computers within the pool. We simulated 325 management scenarios (nitrogen application rates and stubble management) at a daily time step over 122 years, for 12,707 climate-soil zones using the Windows-based Agricultural Production Systems SIMulator (APSIM). These simulations would have taken over 30 years on a single computer. Our hybrid high performance computing (HPC) approach completed the modeling within 10.5 days-a speed-up of over 1000 times-with most jobs finishing within the first few days. The approach utilizes existing idle organization-wide computing resources and eliminates the need to translate Windows-based models to other operating systems for implementation on computing clusters. There are however, numerous computing challenges that need to be addressed for the effective use of these techniques and there remain several potential areas for further performance improvement. The results demonstrate the effectiveness of the approach in making high-resolution modeling of agricultural systems possible over continental and global scales. (c) 2012 Elsevier Ltd. All rights reserved.

  • CN
  • AU
  • CAS_Chinese_Acad_Sci (CN)
  • CSIRO (AU)
  • Univ_Technol_Sydney_UTS (AU)
Data keywords
  • high performance computing
  • agricultural model
Agriculture keywords
  • agriculture
Data topic
  • big data
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CAS_Chinese_Acad_Sci (CN)
  • CSIRO (AU)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.