e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Genomic sequence of the aflatoxigenic filamentous fungus Aspergillus nomius


Background: Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A. parasiticus, isolates of A. nomius are capable of secreting B- and G- aflatoxins. Results: In this study we discovered that the A. nomius type strain (NRRL 13137) has a genome size of approximately 36 Mb which is comparable to other Aspergilli whose genomes have been sequenced. Its genome encompasses 11,918 predicted genes, 72 % of which were assigned GO terms using BLAST2GO. More than 1,200 of those predicted genes were identified as unique to A. nomius, and the most significantly enriched GO category among the unique genes was oxidoreducatase activity. Phylogenomic inference shows NRRL 13137 as ancestral to the other aflatoxigenic species examined from section Flavi. This strain contains a single mating-type idiomorph designated as MAT1-1. Conclusions: This study provides a preliminary analysis of the A. nomius genome. Given the recently discovered potential for A. nomius to undergo sexual recombination, and based on our findings, this genome sequence provides an additional evolutionary reference point for studying the genetics and biology of aflatoxin production.

  • US
  • USDA_ARS_Agr_Res_Serv (US)
Data keywords
  • ontology
Agriculture keywords
  • agriculture
Data topic
  • big data
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • USDA_ARS_Agr_Res_Serv (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.