e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Long-Term Effects of Soil Fertility Management on Carbon Sequestration in a Rice-Lentil Cropping System of the Indo-Gangetic Plains


Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on soil quality, agronomic production, and adaptation to and mitigation of climate change. In a 21-yr field experiment conducted under subhumid tropical conditions in India, the impacts of crop residue C inputs were assessed for the rice (Oryza sativa L.)-lentil (Lens esculenta Moench) cropping sequence. These impacts were evaluated in an experiment involving mineral fertilizers and manuring treatments on crop yield sustainability with reference to critical biomass requirements for maintenance of SOC in an Inceptisol. Application of farmyard manure (FYM) without and with mineral fertilizers increased C input and SOC concentration and stock. In comparison with the control, the 100% organic (FYM) treatment had significantly higher profile SOC (27.5 Mg ha(-1)), and more C build up (55.0%) and C sequestration (6.6 Mg C ha(-1)) to 1-m depth vis-a-vis the antecedent values in 1986. These parameters were also higher in 100% FYM treatment at a rate providing equivalent amount of the recommended dose of N followed by conjunctive use of FYM and mineral fertilizers. The SOC stock and rate of sequestration were positively correlated with cumulative C input, and with sustainable yield index (SYI) of upland rice and lentil. Higher grain yield (1.95 and 1.04 Mg ha(-1) of rice and lentil, respectively) was obtained with the application of 50% organic (FYM)+50% recommended dose of fertilizer (RDF). In comparison, higher SOC sequestration rate was measured with the application of 100% organic (FYM). For every Mg increase in SOC stock in the root zone there was 0.16 and 0.18 Mg ha(-1)yr(-1) yield increase of rice and lentil, respectively. For maintaining a stable SOC level (zero change due to cropping), a minimum quantity of 2.47 Mg C ha(-1) yr(-1) is required for this soil, climate, cropping system, and fertilization treatments. To achieve this quantity of C, 7.1 Mg of biomass is required to be produced every year vs. average rice and lentil yields of 1.6 and 0.7 Mg ha(-1), respectively. The sole application of mineral fertilizers at 50 or 100% of the RDF did not maintain the SOC stock. Thus, application of FYM (or other organics) in conjunction with mineral fertilizers is essential to maintaining and enhancing the SOC stock in the rice-based cropping systems.

  • IN
  • US
  • ICAR_Indian_Council_Agr_Res (IN)
  • Ohio_State_Univ_Columbus (US)
  • Banaras_Hindu_Univ (IN)
Data keywords
  • rdf
Agriculture keywords
  • crop system
  • agriculture
Data topic
  • information systems
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • ICAR_Indian_Council_Agr_Res (IN)
  • Ohio_State_Univ_Columbus (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.