e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning

en
Abstract

The birth of 'Dolly', the first mammal cloned from an adult donor cell, has sparked a flurry of research activities to improve cloning technology and to understand the underlying mechanism of epigenetic reprogramming of the transferred somatic cell nucleus. Especially in ruminants, somatic cell nuclear transfer (SCNT) is frequently associated with pathological changes in the foetal and placental phenotype and has significant consequences for development both before and after birth. The most critical factor is epigenetic reprogramming of the transferred somatic cell nucleus from its differentiated status into the totipotent state of the early embryo. This involves an erasure of the gene expression program of the respective donor cell and the establishment of the well-orchestrated sequence of expression of an estimated number of 10000-12000 genes regulating embryonic and foetal development. The following article reviews the present knowledge on the epigenetic reprogramming of the transferred somatic cell nucleus, with emphasis on DNA methylation, imprinting, X-chromosome inactivation and telomere length restoration in bovine development. Additionally, we briefly discuss other approaches towards epigenetic nuclear reprogramming, including the fusion of somatic and embryonic stem cells and the overexpression of genes crucial in the formation and maintenance of the pluripotent status. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realising the great potential of SCNT for basic biological research and for various agricultural and biomedical applications.

en
Year
2008
en
Country
  • DE
  • US
  • CA
  • NZ
Organization
  • Univ_Guelph (CA)
  • Univ_Connecticut (US)
Data keywords
  • knowledge
en
Agriculture keywords
  • agriculture
en
Data topic
  • information systems
en
SO
REPRODUCTION
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Univ_Guelph (CA)
uid:/VWJ596KJ
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.