e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Comparative Sensor Fusion Between Hyperspectral and Multispectral Satellite Sensors for Monitoring Microcystin Distribution in Lake Erie

en
Abstract

Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophication in the water body. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepatotoxin microcystin. The hepatotoxin microcystin threatens human health and the ecosystem, and it is a concern for water treatment plants using the lake water as a tap water source. This study demonstrates the prototype of a near real-time early warning system using integrated data fusion and mining (IDFM) techniques with the aid of both hyperspectral (MERIS) and multispectral (MODIS and Landsat) satellite sensors to determine spatiotemporal microcystin concentrations in Lake Erie. In the proposed IDFM, the MODIS images with high temporal resolution are fused with the MERIS and Landsat images with higher spatial resolution to create synthetic images on a daily basis. The spatiotemporal distributions of microcystin within western Lake Erie were then reconstructed using the band data from the fused products with machine learning or data mining techniques such as genetic programming (GP) models. The performance of the data mining models derived using fused hyperspectral and fused multispectral sensor data are quantified using four statistical indices. These data mining models were further compared with traditional two-band models in terms of microcystin prediction accuracy. This study confirmed that GP models outperformed traditional two-band models, and additional spectral reflectance data offered by hyperspectral sensors produces a noticeable increase in the prediction accuracy especially in the range of low microcystin concentrations.

en
Year
2014
en
Country
  • US
Organization
  • Univ_Cent_Florida (US)
  • US_EPA_Environm_Protect_Agcy (US)
Data keywords
  • machine learning
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • modeling
  • sensors
en
SO
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/WDCZXGGM
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.