e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Seasonal spectral response patterns of winter wheat canopy for crop performance monitoring

en
Abstract

Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies valuable information on crop condition and growth processes. Much research has been carried out on vegetation phenology issues. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behaviuor of different species and their relation to crop vigour. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agr-specific relationships allow to assess crop condition during different portions of the growth cycle and thus effectively track plant development and make yield predictions. The applicability of different vegetation indices for monitoring crop seasonal dynamics, health condition, and yield potential was examined.

en
Year
2013
en
Country
  • BG
Organization
    Data keywords
    • knowledge
    • data reliability
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • modeling
    • sensors
    en
    SO
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/X1WP9RKC
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.