e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence


Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2O2-producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.

  • NO
  • DE
  • Leibniz_Univ_Hannover (DE)
Data keywords
  • machine learning
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.