e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Assessment of Fatigue Damage of Floating Fish Cages Due to Wave Induced Response


Floating fish cages provide the main production utilities for salmon farming. However, despite their pivotal role in production safety as well as in protection of the environment, there is still much room for improvement in relation to verified structural design procedures and computerized tools for structural analysis. To a large extent, they can be regarded as not being in accordance with the state-of-the-art of structural analysis and design for more traditional types of marine structures. In this paper, a study of fatigue design for floating fish farms is presented. This study is based on a structure that is being applied by the Norwegian fish farming industry today. The floater is made of steel cylinders that are configured as a square. The formulation for the wave loading is based on a combination of potential theory and horizontal drag forces on the floater. Horizontal and vertical drag forces on the netpen are also accounted for. A fatigue design procedure for floating fish farms in steel is suggested. The procedure is based on a time domain analysis of the structure in irregular waves. For each seastate, 1/2 h (real time) analysis is performed and the stress history for an assumed critical location is computed. Based on the stress histories, the fatigue damage is estimated by application of rain flow counting and a given SN curve. The scatter diagram for the seastates at a given location is generated from the associated wind speed distribution. [DOI: 10.1115/1.4003699]

  • NO
    Data keywords
      Agriculture keywords
      • farm
      • farming
      Data topic
      • information systems
      Document type

      Inappropriate format for Document type, expected simple value but got array, please use list format

      Institutions 10 co-publis
        Powered by Lodex 8.20.3
        logo commission europeenne
        e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
        Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.