e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis


Weed control in precision agriculture refers to the design of site-specific control treatments according to weed coverage and it is very useful to minimise costs and environmental risks. The crucial component is to provide precise and timely weed maps via weed monitoring. This paper compares different approaches for weed mapping using imagery from Unmanned Aerial Vehicles in sunflower crops. We explore different alternatives, such as object-based analysis, which is a strategy that is spreading rapidly in the field of remote sensing. The usefulness of these approaches is tested by considering support vector machines, one of the most popular machine learning classifiers. The results show that the object-based analysis is more promising than the pixel-based one and demonstrate that both the features related to vegetation indexes and those related to the shape of the objects are meaningful for the problem.

  • ES
  • CSIC_Spanish_Natl_Res_Council (ES)
  • Univ_Cordoba_UCO (ES)
Data keywords
  • machine learning
Agriculture keywords
  • agriculture
Data topic
  • big data
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CSIC_Spanish_Natl_Res_Council (ES)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.