e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Analysis of Bovine Viral Diarrhea Viruses-infected monocytes: identification of cytopathic and non-cytopathic biotype differences


Background: Bovine Viral Diarrhea Virus (BVDV) infection is widespread in cattle worldwide, causing important economic losses. Pathogenesis of the disease caused by BVDV is complex, as each BVDV strain has two biotypes: non-cytopathic (ncp) and cytopathic (cp). BVDV can cause a persistent latent infection and immune suppression if animals are infected with an ncp biotype during early gestation, followed by a subsequent infection of the cp biotype. The molecular mechanisms that underscore the complex disease etiology leading to immune suppression in cattle caused by BVDV are not well understood. Results: Using proteomics, we evaluated the effect of cp and ncp BVDV infection of bovine monocytes to determine their role in viral immune suppression and uncontrolled inflammation. Proteins were isolated by differential detergent fractionation and identified by 2D-LC ESI MS/MS. We identified 137 and 228 significantly altered bovine proteins due to ncp and cp BVDV infection, respectively. Functional analysis of these proteins using the Gene Ontology (GO) showed multiple under-and over-represented GO functions in molecular function, biological process and cellular component between the two BVDV biotypes. Analysis of the top immunological pathways affected by BVDV infection revealed that pathways representing macropinocytosis signalling, virus entry via endocytic pathway, integrin signalling and primary immunodeficiency signalling were identified only in ncp BVDV-infected monocytes. In contrast, pathways like actin cytoskeleton signalling, RhoA signalling, clathrin mediated endocytosis signalling and interferon signalling were identified only in cp BDVD-infected cells. Of the six common pathways involved in cp and ncp BVDV infection, acute phase response signalling was the most significant for both BVDV biotypes. Although, most shared altered host proteins between both BVDV biotypes showed the same type of change, integrin alpha 2b (ITGA2B) and integrin beta 3 (ITGB3) were down-regulated by ncp BVDV and up-regulated by cp BVDV infection. Conclusions: This study shows that, as we expected, there are significant functional differences in the host proteins that respond to cp or ncp BVDV infection. The combined use of GO and systems biology network modelling facilitated a better understanding of host-pathogen interactions.

  • US
  • Mississippi_State_Univ (US)
Data keywords
  • ontology
Agriculture keywords
  • cattle
Data topic
  • information systems
  • modeling
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Mississippi_State_Univ (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.