e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


PAIRS: A scalable geo-spatial data analytics platform


Geospatial data volume exceeds hundreds of Petabytes and is increasing exponentially mainly driven by images/videos/data generated by mobile devices and high resolution imaging systems. Fast data discovery on historical archives and/or real time datasets is currently limited by various data formats that have different projections and spatial resolution, requiring extensive data processing before analytics can be carried out. A new platform called Physical Analytics Integrated Repository and Services (PAIRS) is presented that enables rapid data discovery by automatically updating, joining, and homogenizing data layers in space and time. Built on top of open source big data software, PAIRS manages automatic data download, data curation, and scalable storage while being simultaneously a computational platform for running physical and statistical models on the curated datasets. By addressing data curation before data being uploaded to the platform, multi-layer queries and filtering can be performed in real time. In addition, PAIRS offers a foundation for developing custom analytics. Towards that end we present two examples with models which are running operationally: (1) high resolution evapo-transpiration and vegetation monitoring for agriculture and (2) hyperlocal weather forecasting driven by machine learning for renewable energy forecasting.

  • US
  • IBM (US)
Data keywords
  • machine learning
  • big data
  • data management
  • Hadoop
  • mapreduce
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.